
Copyright, 2019 OVH 

FERMI

Micro-architecture. Chip Size : 40nm

Year 2010

Streaming Multiprocessor (SM) specifications:

Card specifications:
• Clock frequency: 1.5 GHz (Estimated)
• Peak Performance: 1.5 TFlops
• Number of transistors: 3.0 Billions
• Total Number of FP32 Cuda Core: 512
• Total Number of FP64 Cuda Core: 256

source : https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

• Global memory clock: 4 GHz
• DRAM Bandwith : 192 GB/s
• Max DRAM : 6 GB
• DRAM Type: GDDR5
• L2 Unified Cache: 768KB
• Number of SMs: 16
• Number of TPCs: NA

• Number of CUDA Cores per SM: 32
• Number of FP32 Cuda Cores per SM: 32
• Number of FP64 Cuda Cores per SM: 16
• Number of Tensor Core per SM: NA
• Number of TU: 4
• Number of SFUs per SM: 4

• Number of LD/ST per SM: 16
• Number of Warp Schedulers: 2
• L1 Cache / Shared Memory: 64KB
• Shared Memory: 32KB of 32bits
• Registers: 32KB of 32bits

Or

Or

https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf


Copyright, 2019 OVH 

KEPLER

Micro-architecture. Chip Size : 28nm

Year 2012

source : http://www.cse.msu.edu/~cse820/lectures/NvidiaGK110ArchNotes.pdf

Streaming Multiprocessor (SM) specifications:

Card specifications:
• Clock frequency: 1.1 GHz
• Peak Performance: 3.1 TFlops
• Number of transistors: 3.5 Billions
• Total Number of FP32 Cuda Core: 1536
• Total Number of FP64 Cuda Core: X

• Global memory clock: 6 GHz
• DRAM Bandwith : 192 GB/s
• Max DRAM : 4 GB
• DRAM Type: GDDR5
• L2 Unified Cache: 768KB
• Number of SMs: 8 SMX
• Number of TPCs: NA

• Number of CUDA Cores per SM: 192
• Number of FP32 Cuda Cores per SM: 192
• Number of FP64 Cuda Cores per SM: 96
• Number of Tensor Core per SM: NA
• Number of TU: 16
• Number of SFUs per SM: 32

• Number of LD/ST per SM: 32
• Number of Warp Schedulers: 4
• L1 Cache / Shared Memory: up to 128KB
• Shared Memory: up to 128KB of 32bits
• Registers: up to 128KB of 32bits

Or

Or

http://www.cse.msu.edu/~cse820/lectures/NvidiaGK110ArchNotes.pdf


Copyright, 2019 OVH 

MAXWELL

Micro-architecture. Chip Size : 28nm

Year 2014

source : https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf

Streaming Multiprocessor (SM) specifications:

Card specifications:
• Clock frequency: 1.1 GHz
• Peak Performance: 4,6 TFlops
• Number of transistors: 8.1 Billions
• Total Number of FP32 Cuda Core: 3072
• Total Number of FP64 Cuda Core: 96

• Global memory clock: 1.7 GHz
• DRAM Bandwith : 336 GB/s
• Max DRAM : 12 GB
• DRAM Type: GDDR5
• L2 Unified Cache: 2MB
• Number of SMs: 24 SMM
• Number of TPCs: NA

• Number of CUDA Cores per SM: 128
• Number of FP32 Cuda Cores per SM: 128
• Number of FP64 Cuda Cores per SM: 4
• Number of Tensor Core per SM: NA
• Number of TU: 8
• Number of SFUs per SM: 32

• Number of LD/ST per SM: 32
• Number of Warp Schedulers: 4
• L1 Cache / Shared Memory: up to 128KB
• Shared Memory: up to 128KB of 32bits
• Registers: up to 256KB of 64bits

Or

Or

https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf


Copyright, 2019 OVH 

PASCAL

Micro-architecture. Chip Size : 16nm

Year 2016

source : https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

Streaming Multiprocessor (SM) specifications:

Card specifications:
• Clock frequency: 1.4 GHz
• Peak Performance: 12 TFlops
• Number of transistors: 15.6 Billions
• Total Number of FP32 Cuda Core: 3840
• Total Number of FP64 Cuda Core: 1920

• Global memory clock: 1.4 GHz
• DRAM Bandwith : 750 GB/s
• Max DRAM : 16 GB
• DRAM Type: GDDR5X
• L2 Unified Cache: 4MB
• Number of SMs: 60
• Number of TPCs: 30

• Number of CUDA Cores per SM: 64
• Number of FP32 Cuda Cores per SM: 64
• Number of FP64 Cuda Cores per SM: 32
• Number of Tensor Core per SM: NA
• Number of TU: 4
• Number of SFUs per SM: 16

• Number of LD/ST per SM: 16
• Number of Warp Schedulers: 2
• L1 Cache / Shared Memory: up to 64KB of 32bits
• Shared Memory: up to 64KB of 32bits
• Registers: 64KB of 32bits

Or

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf


Copyright, 2019 OVH 

VOLTA

Micro-architecture. Chip Size : 12nm

Year 2017

Streaming Multiprocessor (SM) specifications

Card specifications:

• Number of CUDA Cores per SM: 32
• Number of INT Cuda Cores per SM : 64
• Number of FP32 Cuda Cores per SM: 64
• Number of FP64 Cuda Cores per SM: 32
• Number of Tensor Core per SM: 8
• Number of TU: 4 (TEX)
• Number of SFUs per SM: 16

• Clock frequency: 1.5 GHz
• Peak Performance: 15.7 TFlops
• Number of transistors: 21.1 Billions
• Total Number of FP32 Cuda Core: 5120
• Total Number of FP64 Cuda Core: 2560

• Global memory clock: 2 GHz
• DRAM Bandwith : 900 GB/s
• Max DRAM : 6GB
• DRAM Type: HBM2
• L2 Unified Cache: 6MB
• Number of SMs: 84
• Number of TPCs: 42

• Number of LD/ST per SM: 32
• Number of Warp Schedulers: 4
• L1 Cache / Shared Memory: 128KB
• Registers:  16K x  32 bits

source : https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf


Copyright, 2019 OVH 

TURING

Micro-architecture. Chip Size : 12nm

Year 2018

Streaming Multiprocessor (SM) specifications

Card specifications:

• Number of CUDA Cores per SM: 64
• Number of FP32 Cuda Cores per SM: 64
• Number of FP64 Cuda Cores per SM: 32
• Number of Tensor Core per SM: 8
• Number of TU: 4
• Number of SFUs per SM: 4

• Clock frequency: 1.6 GHz
• Peak Performance: 1.5 TFlops
• Number of transistors: 18.6 Billions
• Total Number of FP32 Cuda Core: 4608
• Total Number of Tensor Core: 576
• Total Number of Ray Tracing Core: 72

• Global memory clock: 2 GHz
• DRAM Bandwith : 672 GB/s
• Max DRAM : 11GB
• DRAM Type: GDDR6
• L2 Unified Cache: 512KB
• Number of SMs: 72
• Number of TPCs: 36

• Number of LD/ST per SM: 16
• Number of Warp Schedulers: 2
• L1 Cache / Shared Memory: 64KB
• Shared Memory: 16K or 48KB
• Registers: 4*16K of 32 bits

source : https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf


Copyright, 2019 OVH 

AMPERE

Micro-architecture. Chip Size : 7nm

Year 2020

Streaming Multiprocessor (SM) specifications

Card specifications:

• Number of CUDA Cores per SM: 108
• Number of INT32 Cuda Cores per SM: 64
• Number of FP32 Cuda Cores per SM: 64
• Number of FP64 Cuda Cores per SM: 32
• Number of Tensor Core per SM: 4
• Number of TU: 4 (TEX)

• Clock frequency: 1.6 GHz
• Peak Performance (FP32): 19.5 TFlops
• Number of transistors: 54 Billions
• Total Number of FP32 Cuda Core: 6912
• Total Number of FP64 Cuda Core: 3456
• Total Number of Tensor Core: 432

• Global memory clock: 2.4 GHz
• DRAM Bandwith : 1.6TB/s
• Max DRAM : 40GB
• DRAM Type: HBM2
• L2 Unified Cache: 40MB
• Number of SMs: 128
• Number of TPCs: 64

• Number of SFUs per SM: 4
• Number of LD/ST per SM: 32
• Number of Warp Schedulers: 4
• L1 Cache / Shared Memory: 192KB
• Registers: 16K x  32 bits

source : https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/

https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/


Copyright, 2019 OVH 

KERNEL

Programming Model.

A thread is a computation unit (function) that has a state and that can be paused and 
resumed that will be executed on the GPU or on the CPU.

You have 3 types of kernels:
• __global__ : called by CPU but executed by GPU
• __device__ : called and executed by GPU
• __host__ : called and executed by CPU

Calling kernel is made this way : kernel <<< nBlocs, threadsPerBloc >>> (arguments);
• nBlocs : size the thread grid to use 
• ThreadsPerBloc : number of threads  to execute simultaneously on each block 

source : http://www.labri.fr/perso/guenneba/pghp_2015/Cours_PGHP_2015_02-IntroCUDA.pdf

Definition:

http://www.labri.fr/perso/guenneba/pghp_2015/Cours_PGHP_2015_02-IntroCUDA.pdf


Copyright, 2019 OVH 

THREAD

Programming Model.

source : https://cs.nyu.edu/courses/fall15/CSCI-GA.3033-004/cuda-main.pdf

Definition:
A GPU Thread is an instantiation of a function over a given data in a GPU Kernel (__global__ 
or __device__). 
For parallel computing : 1 thread = 1 function application over 1 data.
Typically, each thread in a kernel will compute one element of an array. There is a common 
pattern to do this that most CUDA programs use are shown below.
Once a kernel is launched, it’s dimensions can’t change

• Each thread has its own private local memory
• Only exists for the lifetime of the thread
• Generally handled automatically by the compiler

Memory: Local Memory

https://cs.nyu.edu/courses/fall15/CSCI-GA.3033-004/cuda-main.pdf


Copyright, 2019 OVH 

THREAD BLOCK

Programming Model.

A thread block is a programming abstraction representing a group of threads that can be executed 
serially or in parallel. For better process and data mapping, threads are grouped into thread blocks. 
The number of threads in block varies with available shared memory. The threads in the same thread 
block run on the same stream processor. Threads in the same block can communicate with each other 
via shared memory, barrier synchronization or other synchronization primitives such as atomic 
operations.
Thread ID is unique within a block, Each block can execute in any order relative to other blocks.

source : https://cs.nyu.edu/courses/fall15/CSCI-GA.3033-004/cuda-main.pdf
https://en.wikipedia.org/wiki/Thread_block

• Each thread block has its own shared memory accessible only by threads within the block
• Much faster than local or global memory
• Requires special handling to get maximum performance
• Only exists for the lifetime of the block

Definition:

Memory: Shared Memory

https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/Synchronization_(computer_science)
https://cs.nyu.edu/courses/fall15/CSCI-GA.3033-004/cuda-main.pdf
https://en.wikipedia.org/wiki/Thread_block


Copyright, 2019 OVH 

GRID

Programming Model.

source : https://cs.nyu.edu/courses/fall15/CSCI-GA.3033-004/cuda-main.pdf
https://cs.nyu.edu/courses/spring12/CSCI-GA.3033-012/lecture5.pdf https://en.wikipedia.org/wiki/Thread_block

• This memory is accessible to all threads as well as the host (CPU).
• Global memory is allocated and deallocated by the host
• Used to initialize the data that the GPU will work on

Multiple thread blocks are combined to form a grid. All the blocks in the same grid contain 
the same number of threads. Grids can be used for computations that require a large 
number of thread blocks to operate in parallel. 
The number of thread blocks in a grid is usually dictated by the size of the data being 
processed or the number of processors in the system, which it can greatly exceed.
All threads in a grid execute the same kernel function.
All blocks in a grid have the same dimensions.

Definition:

Memory: Global Memory

https://cs.nyu.edu/courses/fall15/CSCI-GA.3033-004/cuda-main.pdf
https://cs.nyu.edu/courses/spring12/CSCI-GA.3033-012/lecture5.pdf
https://en.wikipedia.org/wiki/Thread_block


Copyright, 2019 OVH 

WARP

Programming Model.

source : https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Programming Model - Multi-core Units

Warp are giving GPU the ability to execute the same application code on hardware with 
different number of execution resources is called transparent scalability. Warp are like the 
Software to Hardware translator.

A hardware design can exploit the commonality of the threads belonging to a warp by 
combining their memory accesses and assuming that it is fine to pause and resume all the 
threads at the same time, rather than deciding on a per-thread basis.

The warp size is the number of threads running concurrently on an Multi-Processor.

Warps are managed by warp scheduler that will orchestrate the execution of the Thread blocks 
on the physical architecture meaning Multi-core Units aka CUDA/RT/Tensor Cores.

Definition:

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf


Copyright, 2019 OVH 

Streaming Multiprocessor (SM)

Architecture.

source : https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Streaming Multiprocessor (SM) is the part where the magic happens. This designed was first 
introduced in 2010 with Fermi and was derived with SMX with Kepler (2012) and SMM with 
Maxwell (2014) but was reintroduced since 2016 with Pascal and Volta (2017).

It’s composed of :
• Scheduling tools (Dispatch Units, Warp Schedulers)
• Memory (L0, L1 Cache)
• Register File : that will link main memory data and computation components residing in Multi-

core units
• Multi-core units : that will perform the calculations but also components that will manage the 

memory flows between Memory units and computation cores

Source : https://research.nvidia.com/sites/default/files/pubs/2012-12_Unifying-Primary-Cache/Gebhart_MICRO_2012.pdf
http://www.irisa.fr/alf/downloads/collange/cours/gpuprog_ufmg/gpuprog_1.pdf

Definition:

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://research.nvidia.com/sites/default/files/pubs/2012-12_Unifying-Primary-Cache/Gebhart_MICRO_2012.pdf
http://www.irisa.fr/alf/downloads/collange/cours/gpuprog_ufmg/gpuprog_1.pdf


Copyright, 2019 OVH 

Streaming Multiprocessor X (SMX)

Architecture.

source : https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Streaming Multiprocessor X (SMX) is a variation of SM.

The main difference with SM is that NVIDIA tried at one point to reduce the number of SM and to make 
bigger SM. Basically SMX are SM under steroid in terms of number of cores but might be less efficient 
if you consider that the shared resources/cores are reduced. However packing everything like this 
saves space and leave room for more transistors (therefore cores) on the same GPU surface … Still, 
the trade off is interesting and was introduced with Kepler Micro-architecture (2012).

Just as SM, SMX are composed of :
• Scheduling tools (Dispatch Units, Warp Schedulers)
• Memory (L0, L1 Cache)
• Register File : that will link main memory data and computation components residing in Multi-core 

units
• Multi-core units : that will perform the calculations but also components that will manage the 

memory flows between Memory units and computation cores

Definition:

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf


Copyright, 2019 OVH 

Streaming Multiprocessor M (SMM)

Architecture.

source : https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Streaming Multiprocessor M (SMM) is a variation of SM and SMX used for Maxwell Micro-architecture 
(2014).

If SMX are SM under steroid. One would describe SMM as a well balanced body building diet along with a 
small dose of steroid. The number of cores for the SMM is still higher that usual SM however the 
drawback of the ultra compact SMX design due to not so good ratio of available shared resources per 
core is more balanced in SMM with 4 subsections having their own dedicated shared resources such as 
dispatch Unit , instruction buffer, and warp schedulers.

Just as SM and SMX, SMM are composed of :
• Scheduling tools (Dispatch Units, Warp Schedulers)
• Memory (L0, L1 Cache)
• Register File : that will link main memory data and computation components residing in Multi-core 

units
• Multi-core units : that will perform the calculations but also components that will manage the memory 

flows between Memory units and computation cores

Definition:

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf


Copyright, 2019 OVH 

Special Function Unit (SFU)

Multi-core Units aka CUDA Cores

source : https://en.wikipedia.org/wiki/Fermi_(microarchitecture)

Execute transcendental instructions such as sin, cosine, 
reciprocal, and square root. Each SFU executes one 
instruction per thread, per clock; a warp executes over 
eight clocks. The SFU pipeline is decoupled from the 
dispatch unit, allowing the dispatch unit to issue to other 
execution units while the SFU is occupied.

Definition:

https://en.wikipedia.org/wiki/Fermi_(microarchitecture)


Copyright, 2019 OVH 

Texture Unit (Text/TMU)

Multi-core Units aka CUDA Cores

source : https://www.nvidia.com/object/Projective_Texture_Mapping.html - https://en.wikipedia.org/wiki/Texture_mapping_unit

A TMU is able to rotate, resize, and distort a bitmap image (performing texture 
sampling), to be placed onto an arbitrary plane of a given 3D model as a texture. This 
process is called texture mapping.

In the past TMU were separated physically from the SM but the Fermi Micro-
Architecture introduced it as a component in the SM making it part of the GPGPU 
strategy. 

Definition:

https://www.nvidia.com/object/Projective_Texture_Mapping.html
https://en.wikipedia.org/wiki/Texture_mapping_unit
https://en.wikipedia.org/wiki/Bitmap_image
https://en.wikipedia.org/wiki/Texture_sampling
https://en.wikipedia.org/wiki/3D_model
https://en.wikipedia.org/wiki/Texture_mapping


Copyright, 2019 OVH 

LOAD/STORE UNIT

Multi-core Units aka CUDA Cores

source : https://devtalk.nvidia.com/default/topic/1016724/coalesced-access-and-hardware-load-store-units/
https://research.nvidia.com/sites/default/files/pubs/2012-12_Unifying-Primary-Cache/Gebhart_MICRO_2012.pdf

To feed the computation cores it’s needed at one point to fetch data from the 
memory (L1 cache data ) and push it to the cores. This is called load and store 
instructions and it’s handled by the SM LD/ST units.

LD/ST units operate on the register which size vary from one micro-architecture 
to another. Memory accesses are managed at each clock operations covering X-
bytes block splitted over X memory addresses

Reading the memory for all ALU assigned in blocks operations (thanks to a 
warp) can take multiple cycles depending on memory address, core and LD/ST 
width.

Definition:

https://devtalk.nvidia.com/default/topic/1016724/coalesced-access-and-hardware-load-store-units/
https://research.nvidia.com/sites/default/files/pubs/2012-12_Unifying-Primary-Cache/Gebhart_MICRO_2012.pdf


Copyright, 2019 OVH 

INT ALU (Half precision)

Multi-core Units aka CUDA Cores

source : https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Definition:
Floating Point Unit provide the capability to GPU to perform Fused Multiple Add 
instructions (FMA or Fused Multiply Accumulate - FMAC) but also addition, 
multiplication or divisions. Special/Complex operations are handled by the SFU.

INT or HP (stands for Half Precision) ALU (Arithmetic Logical Unit) are performing 
FMA over 16 Bits elements

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf


Copyright, 2019 OVH 

FP32 ALU (Single Precision)

Multi-core Units aka CUDA Cores

source : https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://devblogs.nvidia.com/new-features-cuda-7-5/

Floating Point Unit provide the capability to GPU to perform Fused Multiple Add 
instructions (FMA or Fused Multiply Accumulate - FMAC) but also addition, 
multiplication or divisions. Special/Complex operations are handled by the SFU.

FP32 or SP (stands for Single Precision) ALU (Arithmetic Logical Unit) are 
performing FMA over 32 Bits elements
In the last GPU Generations starting from Pascal the FP32 units were also able to 
process Half Precision (HP) FP16.

Definition:

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://devblogs.nvidia.com/new-features-cuda-7-5/


Copyright, 2019 OVH 

FP64 ALU (Double Precision)

Multi-core Units aka CUDA Cores

source : https://docs.nvidia.com/cuda/floating-point/index.html

Floating Point Unit provide the capability to GPU to perform Fused 
Multiple Add instructions (FMA or Fused Multiply Accumulate - FMAC) 
but also addition, multiplication or divisions. Special/Complex 
operations are handled by the SFU.

FP64 or DP (stands for Double Precision) ALU (Arithmetic Logical 
Unit) are performing FMA over 64 Bits elements

Definition:

https://docs.nvidia.com/cuda/floating-point/index.html


Copyright, 2019 OVH 

Tensor Core

Multi-core Units aka CUDA Cores

source : https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/Turing-Tensor-Core_30fps_FINAL_736x414.gif
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

Tensor cores are pretty new to GPGPUs as it was introduced in 2017 with Volta Micro-architecture.

Tensor cores were introduced in 2017 with Volta Micro-architecture. As graphical rendering is all about 4x4 
matrices as objects have x,y,z and rotation which makes object representation being referred as 4x4x4 
matrices. To perform graphical rendering for an object you need to have the object in its referential, then 
move it to the real world referential and finally project it into the “camera” referential (clipping). Everything is 
just about Multiply and accumulate 4x4x4 matrices. This is also perfect for Deep Learning applications 
(https://www.ovh.com/fr/blog/deep-learning-explained-to-my-8-year-old-daughter/)

Easy enough the big thing with TensorCore is the smart way it was implemented as it’s performing mixt 
precision calculations as presented below… does this operation remind you of something dear AI 
programmers #ConvolutionNeuralNetworks

Definition:

And here is how you improve performances by up to 32 times in Turing Architectures

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/Turing-Tensor-Core_30fps_FINAL_736x414.gif
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
https://www.ovh.com/fr/blog/deep-learning-explained-to-my-8-year-old-daughter/


Copyright, 2019 OVH 

Ray Tracing Core (RT Core)

Multi-core Units aka CUDA Cores

source : https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://en.wikipedia.org/wiki/Nvidia_RTX.  https://www.youtube.com/watch?v=yKbmVJBqA_Y

With Ray Tracing core the Unified shaders architecture is now being questioned. As explained in the 
“Fermi Microarchitecture card” GPU prior to GPGPU (started with Fermi) were designed with hardware 
specifications corresponding to image rendering pipeline.
By implementing RT Cores we are (partially) going back to the good old day of image rendering 
pipelines encoded into hardware where pixel and vertex shaders are separated.

Ray Tracing is a computing technic to emulate the light effects in image rendering. RT Core / RTX is a 
combination of Ray Tracing mathematical calculation combined with intuitive light effect prediction 
using Deep Learning Super Sampling (DLSS) executing on… Tensor cores. All of this should lead to 
augmented rasterization by using denoising and upsampling.

Definition:

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://en.wikipedia.org/wiki/Nvidia_RTX
https://www.youtube.com/watch%3Fv=yKbmVJBqA_Y

